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Large pretrained diffusion models can provide strong priors beneficial for

many graphics applications. However, generative applications such as neural

rendering and inverse methods such as SVBRDF estimation and intrinsic

image decomposition require additional input or output channels. Current

solutions for channel expansion are often application specific and these

solutions can be difficult to adapt to different diffusion models or new tasks.

This paper introduces Teamwork: a flexible and efficient unified solution for

jointly increasing the number of input and output channels as well as adapt-

ing a pretrained diffusion model to new tasks. Teamwork achieves channel

expansion without altering the pretrained diffusion model architecture by

coordinating and adapting multiple instances of the base diffusion model

(i.e., teammates). We employ a novel variation of Low Rank-Adaptation

(LoRA) to jointly address both adaptation and coordination between the dif-

ferent teammates. Furthermore Teamwork supports dynamic (de)activation

of teammates. We demonstrate the flexibility and efficiency of Teamwork

on a variety of generative and inverse graphics tasks such as inpainting,

single image SVBRDF estimation, intrinsic decomposition, neural shading,

and intrinsic image synthesis.
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1 Introduction
Diffusion models [Karras et al. 2022; Rombach et al. 2022; Song

et al. 2021] are a versatile class of generative models that have been

applied to a wide range of image synthesis tasks such as image

restoration [Dhariwal and Nichol 2021; Ho et al. 2020, 2022a], super-

resolution [Kadkhodaie and Simoncelli 2021; Saharia et al. 2023],

image-to-image translation [Saharia et al. 2022; Sasaki et al. 2021],

and text-to-image synthesis [Nichol et al. 2022; Ramesh et al. 2022].

While flexible and powerful, diffusion models are also incredibly

data hungry and computationally expensive to train. Consequently,

recent work leverages large pretrained text-to-image diffusion mod-

els [Stability AI 2022, 2023a; von Platen et al. 2022] as a prior for

different tasks.
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Pretrained text-to-image diffusion models typically take, besides

a text prompt, a three-channel input (i.e., noisy image) and out-

put an three-channel RGB image, possibly via a latent space of

different dimensions. Many graphics applications, however, require

additional input channels (e.g., neural shading [Nalbach et al. 2017;

Zeng et al. 2024]) and/or output more than three data channels

(e.g., spatially-varying reflectance distribution function (SVBRDF)

estimation [Sartor and Peers 2023; Vecchio et al. 2024], intrinsic

image decomposition [Kocsis et al. 2024; Zeng et al. 2024], and

matting [Zhang and Agrawala 2024]). Common solutions for in-

put expansion include ControlNet [Zhang et al. 2023] and adding

zero-convolutions to the head (e.g., [Sartor and Peers 2023; Zeng

et al. 2024]). Expanding the number of output channels is less stan-

dardized and relies on bespoke solutions ranging from shared/joint

attention [Hertz et al. 2023; Zhang and Agrawala 2024] or adding

specialized tokens (i.e., prompt keywords) to switch between output

tasks/channel (e.g., [Luo et al. 2024; Zeng et al. 2024]). Expanding

both input and output channels requires a combination of disparate

methods, which each can differ how much embedded priors in the

pretrained model are preserved, how well the method mitigates

overfitting, and training costs.

In this paper, we present a flexible unified solution, named Team-
work, for expanding the number of input and output channels when

adapting a pretrained diffusion model. We formulate channel ex-

pansion as adapting multiple instances of the same foundational

base model that each take care of three input or output channels.

In order to model correlations between different channels, the dif-

ferent adapted instances of the base model require a mechanism

to coordinate and exchange information. Teamwork solves both

problems, adaptation and coordination, simultaneously via an el-

egant extension of LoRA [Hu et al. 2022] that models offsets to

the linear layers over all base model instances jointly with an low-

rank approximation. Teamwork offers a number of advantages over

prior work. First, both input and output expansion is handled in the

same framework. Second, Teamwork is easy to implement on top

of a regular LoRA implementation. Third, Teamwork is efficient; it

does not incur any computation or memory overhead compared to

adapting each base-diffusion model separately with regular LoRA.

Finally, Teamwork supports dynamic (de)activation of input and

output channels without retraining or finetuning. Not only does this

offer additional flexibility during inference, it also allows us, similar

to RGB→X [Zeng et al. 2024], to train Teamwork with heteroge-

neous datasets that feature different subsets of data channels thereby

facilitating enrichment and diversification of training exemplars.

We demonstrate the efficacy and flexibility of our Teamwork

framework on a variety of inverse computer graphics tasks, such

as single image SVBRDF estimation and intrinsic image decom-

position, as well as generative computer graphics tasks, such as

inpainting, neural rendering, and intrinsic image synthesis. Using
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(a) Head Expansion (b) ControlNet (c) Batching (d) Joint Attention (e) Teamwork

Frozen Linear Trainable Linear LoRA Linear Attention Noisy Latents Output Latents Input Latents

Fig. 1. Schematic overview of different common input and output channel expansion techniques for pretrained diffusion models. Input expansion: (a)
Zero-convolution expands the input head with zero-initialized weights and subsequently finetunes the model. The latter operation increases the risk of
overfitting, and thus destroy potentially valuable embedded priors. (b) ControlNet reduces the risk of overfitting by finetuning a copy of the (frozen) pretrained
diffusion model while injecting weight offsets to each layer in the original diffusion model. Output expansion: (c) Batching, a common training optimization
step, allows to run multiple instances of a model in parallel at inference. However, each model instance in a batch is unaware of the others, and thus no
coordination occurs between the different instances. (d) Joint Attention coordinates between different instances of adaptations of a diffusion model by
replacing self-attention layers with joint-attention layers over the multiple instances. Conceptually, Joint Attention is the dual of Teamwork (e) which keeps
attention computations within each instance, but instead shares the features from the linear layers.

these applications, we validate Teamwork’s performance against

competing expansion and coordination techniques, demonstrate

the importance of coordination, and explore the impact of dynamic

(de)activation of input and output channels. Code and trained mod-

els can be found at https://github.com/samsartor/teamwork.

2 Related Work
Diffusion Models. Diffusion models form a class of powerful gen-

erative machine learning solutions that have the uncanny ability

to synthesize high-quality images covering a wide variety of styles

ranging from photorealistic to artistic. However, image diffusion

models are also incredibly data hungry and computationally expen-

sive to train. Fortunately, several large pretrained diffusion models

are publicly available [Stability AI 2022, 2023a; von Platen et al.

2022], which have subsequently been adapted to perform novel

tasks. There exists a wide variety of adaptation methods, but some

of the most commonly used ones are model finetuning and Low-

Rank Adaptation (LoRA) [Hu et al. 2022]. Finetuning (i.e., continuing

to train the model on a new task) requires carefully designed train-

ing sets to avoid overfitting [Biderman et al. 2024; Shuttleworth et al.

2024]. LoRAs, on the other hand, mitigate overfitting by keeping

the original weights W of linear layers, and modeling an offset ΔW
by a low-rank approximation which furthermore regularizes the

adaptation. Formally, given the frozen linear weights W ∈ R𝑚×𝑛

of a layer, the adapted weights are then expressed as: W + ΔW,

with ΔW = AB, A ∈ R𝑚×𝑟
, and B ∈ R𝑟×𝑛

, forming a low rank

approximation (𝑟 << 𝑚,𝑛) of the parameter offsets. While other

regularization techniques (e.g., weight decay and drop-out) and

adaptation methods (e.g., Elastic Weight Consolidation [Kirkpatrick

et al. 2017], Synaptic Intelligence [Zenke et al. 2017], Adaptor Lay-

ers [Houlsby et al. 2019; Lin et al. 2020]) exist, LoRAs have the

added advantage of requiring little storage overhead or increased

latency. However, model adaptation does not alter the number of

input and output channels. Teamwork keeps LoRA’s compactness

and efficiency, while at the same time it adds the ability to expand

the number of coordinated input and output channels.

Input Expansion. A lightweight strategy to increase the number

of input channels (e.g., to add additional conditions to the diffusion

model) is to expand the input head with a zero-convolution and sub-

sequently finetune the model (Figure 1.a). Zero-convolution head

expansion has been used, for example, to add conditions to an un-

conditional SVBRDF prediction model [Sartor and Peers 2023], and

to include additional input maps in a neural shading network [Zeng

et al. 2024]. However, finetuning increases the risk of overfitting [Bi-

derman et al. 2024; Shuttleworth et al. 2024]. ControlNet [Zhang et al.

2023] offers an elegant alternative that reduces the risk of overfitting

by leaving the base model unchanged, and instead ControlNet adds

a parallel model (with identical architecture) that provides weight

offsets at each layer of the diffusion model (Figure 1.b). A variant of

ControlNet is ControlLoRA [Hecong 2023] where the weights of the

ControlNet are adapted with LoRAs. GLIGEN [Li et al. 2023] also

keeps the base model frozen, but adds a gated self-attention layer

between the self-attention and cross-attention in the transformer

blocks. While suitable for input channel expansion, neither Control-

Net, nor ControlLoRA, nor GLIGEN can perform output channel

expansion.

Output Expansion. Expanding the number of output channels of a

pretrained diffusion model without full retraining remains an open

problem and task-specific solutions have been introduced. Recent

work in leveraging pretrained diffusion models for intrinsic image

decomposition [Luo et al. 2024; Zeng et al. 2024] (i.e., decompos-

ing an image in different reflectance components such as albedo,

roughness, normals and irradiance) introduced specialized prompt

keywords to direct the diffusionmodel to generate the requested out-

put. While each output is generated using the same model weights,
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there is no explicit coordination between the inference processes of

different outputs, and coherence is implicitly encouraged by using

the same seed for each input plus a strong conditioning on the input

image. An alternative strategy is to leverage multiple (differently)

adapted instances of a pretrained base model that each produce

part of the desired output channels. However, to ensure that all

instances generate a coherent output, some form of coordination

between the different models is needed – without coordination each

model operates independently, cf. batching (Figure 1.c). Hertz et

al. [2023] share attention between the different instances to gen-

erate multiple images with a consistent style. Recently, Zhang et

al. [2024] employed joint attention to simultaneously generate a fore

and background layer (Figure 1.d). While joint attention is a very

flexible and powerful coordination strategy, it incurs a significant

(quadratic) computational overhead cost in terms of model instances.

In contrast, the coordination between different teammates in Team-

work does not incur any computational overhead compared to the

cost of adapting each diffusion model instance with regular LoRA.

Multi-diffusion Inference. Multidiffusion [Bar-Tal et al. 2023] in-

terleaves multiple diffusion models to synthesize high resolution

images and panoramas. Multidiffusion does not explicitly coordi-

nate between the different diffusion instances, but instead relies on

implicit coordination by spatially overlapping each models’ output

and by interleaving and combining the denoising steps. Hence, it

does not support output expansion, only domain extension. Fur-

thermore, multidiffusion only supports coordination with (spatially)

nearby diffusion instances. In contrast, Teamwork supports channel

expansion, and it provides explicit support for coordination between

all diffusion instances.

A common strategy in video-diffusion [Blattmann et al. 2023;

Girdhar et al. 2024; Gupta et al. 2025; Ho et al. 2022b; Singer et al.

2023] is to run an image diffusion model per-frame and coordinate

synthesis between frames by augmenting the diffusion model with

a combination of 3D convolutions (or factored 2D spatial and 1D

temporal convolutions) and temporal attention. However, due to the

computational overhead of temporal attention, these models often

synthesize a few key frames and then interpolate the in-between

frames. Lumiere [Bar-Tal et al. 2024] synthesizes a whole video at

once by using a cascading architecture that down/upsamples both

spatially and temporally. A key difference between video diffusion

and Teamwork is that video diffusion performs the same task for

each frame, whereas Teamwork performs semantically different

tasks per diffusion instance. Furthermore, due to the memory effi-

ciency of the low-rank approximation, Teamwork scales better in

the number of output channels.

3 Method
Our goal is to widen the number of output or input channels of a

given pretained diffusion model such as Stable Diffusion [Esser et al.

2025; Stability AI 2022, 2023b], Deep Floyd [Stability AI 2023a], or

Flux [Black Forest Labs 2024], as well as adapt the model for a given

task. Modifying the architecture of the base diffusionmodel typically

destroys much of the embedded knowledge. Therefore, we retain the

original architecture, and instead run 𝑇 = ⌈𝑐/3⌉ adapted instances

of a base diffusion model, called teammates, that coordinate their

outputs for 𝑐 output/input channels. We first explain the basis idea

for widening and adapting the output channels, and extend this idea

to expanding the input channels in Section 3.2.

3.1 Output Expansion
Similar as in LoRA [Hu et al. 2022], we focus on adapting the linear

layers of the diffusion model. DenoteW ∈ R𝑚×𝑛
the frozen weights

of a linear layer in the base diffusion model, and y = [y1 . . . y𝑇 ], y𝑖 ∈
R𝑚

and x = [x1 . . . x𝑇 ], x𝑖 ∈ R𝑛
are the concatenated output and

input feature vectors respectively of 𝑇 instances of the linear layer.

We can then compactly formulate the combined linear layer as:

y =


W

. . .

W

 x, (1)

which is equivalent to batching𝑇 instances of a diffusion model (Fig-

ure 1.c). Each instance is oblivious to the others, which is expressed

by the block diagonal structure of the combined linear weight matrix

in Equation (1) and thus each x𝑖 only affects y𝑗 when 𝑖 = 𝑗 . Con-

sequently, the output of each instance is independently generated

from the outputs of the other instances.

To adapt the joint model in Equation (1) for output channel ex-

pansion, we need (1) to adapt the behavior of each instance (i.e.,

different teammates should output a different subset of the output

channels), and (2) ensure that the outputs of different teammates

are coherent (e.g., similar to how there is coherence between R, G

and B channels in an image, so is there often coherence between

different channels in multi-channel data such as SVBRDFs or intrin-

sic images). We propose to achieve both goals jointly by addition of

an offset weight matrix:

y = block(W)x + ΔWx, (2)

where ΔW ∈ R𝑇𝑚×𝑇𝑛
are the adaptation offset weights. The matrix

ΔW is very large, and an efficient encoding is desired. Inspired by

LoRA [Hu et al. 2022], we employ a low-rank representation:

ΔW =


A1

.

.

.

A𝑇


[
B1 . . . B𝑇

]
. (3)

with low rank factors A𝑖 ∈ R𝑚×𝑟
and B𝑖 ∈ R𝑟×𝑛

respectively.

To gain better insight in Equation (2), we contrast it to applying

regular LoRA to each of the 𝑇 teammates. In the latter case, the

combined weight matrix becomes: ΔW = blocki (A𝑖B𝑖 ). Although
uniquely adapted, each y𝑖 is again only affected by x𝑗 when 𝑖 = 𝑗 .

Hence, similar to batching (Figure 1.c), each teammate operates

in isolation and it is oblivious to what the other teammates are

doing. In contrast, our Teamwork framework forms a low-rank

representation of the whole offset matrix ΔW. Crucially, because

the resulting ΔW is not block-diagonal anymore, each output y𝑖 is
now affected by all inputs x𝑗 , allowing for feature information to

flow between different teammates (i.e., coordination).

We can also draw parallels between Teamwork and Joint Atten-

tion [Zhang and Agrawala 2024]. Joint attention enables coordina-

tion between different instances of a(n adapted) diffusion model

by replacing the self-attention layers with joint-attention layers
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across all models (Figure 1.d). However, Joint Attention suffers from

a quadratic computation complexity with respect to the number of

models (as well as the resolution). Furthermore, Joint Attention only

offers coordination and a separate adaptation method is needed (e.g.,

regular LoRA on each instance). Teamwork is in some sense the

dual of Joint Attention; instead of exchanging information via the

attention layers, Teamwork instead shares information via the linear

features of the model (Figure 1.e). This offers three advantages: (1)

coordination and adaption are performed jointly, (2) the number of

coordination layers quadruples (i.e., four linear layers per attention

layer), and (3) the computational cost is identical to applying a regu-

lar LoRA to each instance (i.e., linear with the number of teammates;

see Section 3.4).

3.2 Input Expansion
We can also leverage Teamwork to widen the number input chan-

nels (i.e., add condition images). Similar as with output expansion,

we add a teammate for each triplet of input conditions; we differ-

entiate between both types of teammates as input-teammates and
output-teammates. The key idea is that diffusion models extract

sophisticated features that are not only useful for image synthesis,

but that are also meaningful for conditioning the diffusion process;

these features are present irrespective of the degree of noise in the

input. Thus input-teammates do not function as diffusion models,

but as vision models. Therefore, we pass the noise-free input image

at every diffusion step instead of starting from noisy latents, and

propagate the resulting features. This is equivalent to ignoring the

output of the input-teammates at every diffusion step. Consequently,

no loss is defined on the input-teammates. However, this does not

mean that the input-teammates are not adapted; the loss from the

output-teammates is still propagated via the dense offset weights

ΔW to the input-teammates.

3.3 Dynamic Activation of Teammates
Teamwork also supports dynamic (de)activation of teammates, both

during inference and training. The latter is particularly useful when

training on heterogenous datasets that have different subsets of the

channels available. Similar to RGB→X [Zeng et al. 2024], rather

than selecting the largest common subset for training, we can during

training dynamically activate the channels present for each training

exemplar, thereby maximally leveraging the information in the

combined training set. Practically, dynamic activation is achieved by

only including the low rank factors A𝑖 and B𝑖 for active teammates

(and corresponding x𝑖 ) when evaluating ΔWx (Equation (3)).

3.4 Practical Considerations
Materialization. MaterializingW + ΔW in regular LoRA is com-

mon practice because it slightly reduces computational evalua-

tion costs from O(𝑚𝑛 + 𝑟 (𝑚 + 𝑛)) to O(𝑚𝑛). However, for Team-

work with 𝑇 teammates, we can exploit that the frozen component

is a block-matrix, yielding an unmaterialized evaluation cost of

O(𝑇𝑚𝑛 + 𝑇𝑟 (𝑚 + 𝑛)), compared to O(𝑇 2𝑚𝑛) for evaluation on a

materialized W + ΔW, and hence materialization is more expen-

sive for modest Teamwork-rank. Furthermore, the memory cost of

materialization for Teamwork is more significant due to the dense

off-diagonal blocks.

Batch Trick. To simplify implementation of Teamwork, we ex-

ploit the inherent capability of batching to run multiple instances

of a diffusion model simultaneously, and expand it by performing

Teamwork-aware (low-rank) operations across the batch dimen-

sions. As a result, linear layers perform Teamwork-aware operations

across batch-dimension, while other layers broadcast across team-

mates without performing any coordination. However, implement-

ing this batch trick limits the micro-batch size to 1, necessitating

the use of gradient accumulation during training. Practically, we

found that gradient accumulation did not pose a major disadvan-

tage as common team sizes (5-10) can easily saturate a single GPU’s

memory, necessitating distributed gradient accumulation.

4 Results
Teamwork is designed as a general framework for input and out-

put expansion of pretrained diffusion models. To demonstrate the

versatility and flexibility of our framework, we apply Teamwork

to five different generative and inverse rendering tasks (inpainting,

single image SVBRDF estimation, intrinsic image decomposition,

neural shading, and intrinsic image synthesis) that require an expan-

sion of the input and/or output channels. All training (and timing)

is performed on a single NVIDIA A40 with 48GB of VRAM. We

use the Prodigy optimizer [Mishchenko and Defazio 2024] to train

Teamwork using 16× gradient accumulation and using a cosine

learning rate schedule with the standard loss for which the base

model was trained (i.e., diffusion loss for Stable Diffusion XL [Sta-

bility AI 2023b] or flow-matching loss for Stable Diffusion 3 [Esser

et al. 2025] and Flux [Black Forest Labs 2024]).

Inpainting. We employ Stable Diffusion 3 [Esser et al. 2025] as

the base diffusion model and adapt it for the generative task of

inpainting [Rombach et al. 2022]. We use three teammates; two

input-teammates: one for the image and one for the mask (copied

to the three RGB channels), and one output-teammate for the re-

sulting inpainted image. We compare Teamwork to different input

expansion techniques such as ControlLoRA [Hecong 2023], Joint

Attention [Zhang and Agrawala 2024] for coordinating between

separately LoRA-adapted teammates, and a variant that employs

both Joint Attention and Teamwork for coordination as both meth-

ods can be employed simultaneously. All models are trained on 64k

images from the PixelProse dataset [Singla et al. 2024] at 1024 pixel

resolution. Training took 31h for ControlLoRA and Teamwork, and

100h for the Joint Attention and combined model due the O(𝑇 2)
time-complexity (versus O(𝑇 ) for Teamwork). In addition, we also

compare against a pretrained ControlNet-based inpainting variant of

Stable Diffusion 3 [Stability AI 2024] which was trained with a larger

batch size (192) and on a much larger training set of 3,840,000 images

from Laoin2B [Sisap 2024] and a proprietary dataset, and thus likely

required significantly more resources for training. We quantitatively

compare (Table 1) the different models on a random test split of

the PixelProse dataset for four different metrics: SI-FID [Shaham

et al. 2019] (2nd column; lower is better), CLIPScore [Hessel et al.

2021] on the inpainted image of the reference (3rd column; higher
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Table 1. Teamwork performs quantitatively similarly compared to other
Stable Diffusion 3 based inpainting methods on a random test split from
the PixelProse dataset [Singla et al. 2024] for four different metrics: SI-
FID [Shaham et al. 2019], CLIPScore [Hessel et al. 2021] with respect to the
text prompt and input image, and IQA [Wang et al. 2023].

Method SI-FID ↓ CLIPScore (Img) ↑ CLIPScore (Txt) ↑ CLIP IQA ↑
ControlNet 13.987 90.18 31.53 0.530

ControlLoRA 17.856 86.97 31.27 0.469

Joint-Attn. 14.147 89.94 31.02 0.486

Teamwork 13.236 89.65 31.05 0.490

Combined 16.473 89.88 31.59 0.515

Input ControlLoRA Joint-Attn Teamwork Combined ControlNet

Fig. 2. Teamwork performs qualitative similarly to different Stable Diffusion
3 based inpainting methods.

is better) and with respect to the input prompt (4th column; higher

is better), and CLIP IQA [Wang et al. 2023] on the inpainted model

(last column; higher is better). All methods perform similarly, both

quantitatively (Table 1) and qualitatively (Figure 2), demonstrating

that Teamwork offers a viable and competitive alternative for input

channel expansion with reduced training costs.

Single Image SVBRDF Estimation. SVBRDF estimation aims to

recover spatially-varying reflectance distribution (SVBRDF) param-

eters (e.g., diffuse albedo, specular albedo, specular roughness, and

surface normals) from a single photograph of a planar material sam-

ple under controlled or uncontrolled lighting. SVBRDF estimation

is traditionally formulated as an inverse rendering problem. Single

image SVBRDF estimation is an inherently underconstrained prob-

lem, and generative diffusion-based SVBRDF estimation methods

(MatFusion [Sartor and Peers 2023] and ControlMat [Vecchio et al.

2024]) have recently been shown to address the resulting ambigui-

ties better than purely regressive techniques. However, to support

the expanded number of output channels (10 channels in total) these

prior diffusion-based SVBRDF solutions are trained from scratch.

We train three Teamwork variants for SVBRDF estimation under

three different lighting conditions mirroring MatFusion [Sartor and

Peers 2023]: colocated flash lighting, unknown environment light-

ing, and flash/no-flash image pairs. Each Teamwork model includes

at minimum 3 input channels (photograph under target lighting)

and 12 output channels (3 for diffuse albedo (gamma 2.2 encoded),

3 for specular albedo (gamma 2.2 encoded), 3 for normals, and 3 for

roughness encoded as a gray-scale image), i.e., 4 output teammates.

For the colocated model, we follow MatFusion and add a second

Input MatFusion SD3 Flux

Fig. 3. Qualitative comparison of SVBRDFs estimated from real-world cap-
tured photographs of Teamwork variants and MatFusion [Sartor and Peers
2023] under colocated (1st row), environment (2nd row), and flash/no-flash
(3rd row) lighting.

input-teammate containing the halfway vector between the light

and view vector per pixel, yielding a total of 2 input and 4 output-

teammates. For the environment lighting variant, we add an extra

output-teammate for the shading-only image that corresponds to

(the normalized) ratio of the photograph over the sum of the diffuse

and specular albedo, yielding a total of 1 input and 5 output team-

mates. Finally, the flash/no-flash model features 2 input-teammates

(one for the flash and one for the no-flash photograph), and the

same 5 output-teammates as the environment lighting variant. We

train each Teamwork variant on 64k exemplars from the MatFusion

SVBRDF training dataset. While MatFusion is limited to 256 × 256

resolution due to the computational cost of training a diffusion

model from scratch, we train our models at 512 × 512 resolution.

We demonstrate Teamwork’s flexibility by using different base

diffusion models (i.e., Stable Diffusion XL [Stability AI 2023b], Stable

Diffusion 3 [Esser et al. 2025], and Flux [Black Forest Labs 2024]).

Qualitative comparison of the three variants against their respec-

tive MatFusion [Sartor and Peers 2023] counterparts are shown

in Figure 3, Figure 4, and the supplemental material. Table 2 quan-

titatively compares the different methods against MatFusion, as

well as selected variants that use Joint Attention for coordination

instead. From the quantitative comparison, we can see that the Team-

work variants outperform MatFusion as well as the Joint Attention

variants in terms of rerender error, and that all models perform

competitively on accuracy for each of the reflectance components.

Not only do the Teamwork variants perform better than MatFu-

sion models despite being trained on significantly fewer training

exemplars and using fewer training iterations (only 4,000 versus

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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Input Reference MatFusion SDXL (Joint-attn) SDXL (Teamwork) SD3 (Joint-attn) SD3 (Teamwork) Flux (Teamwork)

Fig. 4. Qualitative comparison of Teamwork variants and MatFusion [Sartor and Peers 2023] on simulated captures under colocated lighting for three synthetic
SVBRDFs. For each SVBRDF we show a rerendering under novel lighting and the estimated diffuse albedo, specular albedo, roughness, and normal maps.

Table 2. Quantitative comparison of different Teamwork variants for single
image SVBRDF estimation under colocated, environment, and flash/no-
flash lighting. For reference, we compare against the diffusion-based Mat-
Fusion [Sartor and Peers 2023] models using the average RMSE on the
estimated parameter maps and the average LPIPS [Zhang et al. 2018] reren-
der error under 128 randomly placed point lights on the MatFusion test set.

Lighting Base Coord. Render RMSE

Model Method Error Diff. Spec. Rough. Norm.

Coloc.

MatFus. N.A. 0.214 0.071 0.0958 0.115 0.0562

SDXL Attn 0.216 0.0471 0.0861 0.105 0.0454

SD3 Attn 0.214 0.0682 0.117 0.145 0.0481

SDXL Team. 0.204 0.0572 0.0876 0.105 0.0416
SD3 Team. 0.188 0.0609 0.0835 0.12 0.0464

Flux Team. 0.195 0.0653 0.101 0.141 0.0454

Environ.

MatFus. N.A. 0.337 0.197 0.133 0.258 0.087

SD3 Team. 0.266 0.143 0.105 0.183 0.0538
Flux Team. 0.273 0.17 0.105 0.2 0.0551

Flash / MatFus. N.A. 0.3709 0.187 0.120 0.143 0.062

No-flash SD3 Team. 0.2518 0.150 0.100 0.116 0.050
pair Flux Team. 0.3184 0.159 0.112 0.235 0.065

672,000 for MatFusion), they are also significantly faster to train:

21/18/85 GPU hours for the Stable Diffusion XL, Stable Diffusion

3, and Flux base-model respectively at 512 resolution versus ∼400
GPU hours for MatFusion (refinement time from the MatFusion base

model) at 256 resolution; a 5∼20× speed-up. For reference, the Joint

Attention variant required 22/41 GPU hours to train for the Stable

Diffusion XL and Stable Diffusion 3 base models respectively. Note

that the impact on the training cost for Stable Diffusion XL with

Joint Attention versus Teamwork is less significant because Stable

Diffusion XL features relatively few attention layers compared to

convolutional layers. More modern diffusion architectures, such as

Stable Diffusion 3 and Flux, depend almost exclusively on attention

layers, and hence incur a more significant training cost increase for

Joint Attention.

Intrinsic Image Decomposition. Intrinsic image decomposition

aims to separate an image into various shading components, hence

it constitutes a one-to-many image translation. While originally

designed to decompose into just two components (i.e., reflectance

and shading), more recently methods consider an expanded defini-

tion of intrinsic components [Kocsis et al. 2024; Zeng et al. 2024];

we follow this later inverse rendering view of intrinsic decompo-

sition. We adapt Stable Diffusion 3 [Esser et al. 2025] to include

1 input-teammate (for the photograph to be decomposed) and 9

different output-teammates at 1024 resolution for: diffuse albedo,

specular albedo, the summed (diffuse and specular) albedo, specular

roughness, normals, depth, diffuse shading, (diffuse plus specular)

shading, and the specular residual defined as the difference between

the image and the diffuse albedo times the diffuse shading.

To demonstrate Teamwork’s ability to support heterogeneous

training datasets, we randomly select 256k training exemplars from:

InteriorVerse [Zhu et al. 2022], HyperSim [Roberts et al. 2021], CGIn-

trinsics [Li and Snavely 2018] (using the CGIntrinsic’s albedo as

total reflectance), Infinigen [Raistrick et al. 2023], and renderings

of random objects selected from the ABC dataset [Koch et al. 2019]

textured with random MatFusion SVBRDFs [Sartor and Peers 2023]

and lit by a random light probe from https://polyhaven.com/hdri;

not all reflectance components are present in each dataset (see sup-

plemental material for a summary of the available components).

The resulting Teamwork model performs comparably (Table 3, Part

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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Table 3. Quantitative comparison of Intrinsic Image Diffusion [Kocsis et al. 2024], RGB→X [Zeng et al. 2024] (pretrained and InteriorVerse retrained variants)
and a Stable Diffusion 3 based Teamwork model (a variant trained on a heterogeneous training set and a variant trained only on InteriorVerse) over the
InteriorVerse test set. To compensate for the albedo-intensity ambiguity, we first apply a least-squares optimization to find an optimal scale per channel before
computing the respective errors for each method.

Method

Diffuse Specular Roughness Albedo Shading Normal

RMSE LPIPS RMSE LPIPS RMSE LPIPS RMSE LPIPS RMSE LPIPS RMSE

I

Kocsis et al. 0.135 0.205 0.126 0.242 0.232 0.384 0.110 0.166 0.144 0.230 ✗
RGB→X 0.229 0.518 0.272 0.576 0.304 0.654 0.148 0.378 0.065 0.137 0.196

Teamwork 0.176 0.248 0.151 0.288 0.291 0.424 0.140 0.208 0.064 0.140 0.121

II

RGB→X (InteriorVerse) 0.165 0.300 0.143 0.293 0.249 0.371 0.139 0.273 0.073 0.211 0.133

RGB→X SD3 (InteriorVerse) 0.141 0.223 0.132 0.274 0.212 0.314 0.127 0.203 0.058 0.159 0.116

Teamwork (InteriorVerse) 0.116 0.156 0.119 0.197 0.189 0.259 0.107 0.136 0.045 0.097 0.093

III

No Coordination 0.205 0.353 0.169 0.370 0.329 0.508 0.170 0.334 0.083 0.225 0.171

Sequential Teamwork 0.236 0.372 0.145 0.359 0.313 0.612 0.190 0.265 0.070 0.172 0.141

InteriorVerse-restricted Teamwork 0.128 0.184 0.150 0.229 0.243 0.321 0.125 0.167 0.054 0.119 0.107

Teamwork (Dropout) 0.195 0.310 0.154 0.293 0.321 0.461 0.162 0.261 0.091 0.189 0.135

Sequential Teamwork (Dropout) 0.221 0.293 0.152 0.292 0.303 0.450 0.173 0.248 0.066 0.155 0.132

Input Reference Intrinsic Image Diffusion RGB→X Teamwork

? ?
?
?

✗ ✗

✗ ✗

✗

✗

? ?
?
?

✗ ✗

✗ ✗

✗

✗

? ?
?
?

✗ ✗

✗ ✗

✗

✗

Fig. 5. Qualitative comparison (on examples from HyperSim [Roberts et al. 2021]) of the pretrained Instrinsic Image Diffusion [Kocsis et al. 2024] and
pretrained RGB→X [Zeng et al. 2024] against a Stable Diffusion 3 based Teamwork variant trained on the heterogeneous training set. For each method the
resulting intrinsic components (if available) are organized as: (1st row): summed albedo, diffuse albedo, and specular albedo; (2nd row): shading, diffuse
shading, specular residual; and (3rd row): roughness, normals, and depth.

I) to the publicly-available Intrinsic Image Diffusion [Kocsis et al.

2024] and RGB→X [Zeng et al. 2024] models over the InteriorVerse

test set. Figure 5 further qualitatively demonstrates intrinsic image

decompositions on three selected images from HyperSim [Roberts

et al. 2021]; see supplemental material for additional decompositions

on other datasets.

While informative, the previous comparison is not conclusive, as

all three models are trained on different datasets. Therefore, we re-

train RGB→X and Teamwork on 256k random samples drawn from

the InteriorVerse training set only (corresponding to ∼6 epochs

over the full InteriorVerse training set); the pretrained Intrinsic

Image Diffusion model [Kocsis et al. 2024] is already exclusively

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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Input Reference X→RGB Teamwork

✗ ✗

✗ ✗

✗

Fig. 6. Neural shading from subsets of intrinsic parameters (1st column
- first row: summed albedo, diffuse albedo, specular albedo; second row:
roughness, normals, depth). While an exact match to the reference (2nd
column) is unlikely due to the uncontrolled lighting, Teamwork (4th column)
produces qualitatively similar results to X→ RGB [Zeng et al. 2024] (3rd
column).

trained on InteriorVerse and thus not retrained. Furthermore, as

RGB→X uses Stable Diffusion 2.1 as a base-model while Teamwork

leverages the more powerful Stable Diffusion 3 as a base-model, we

also train an Stable Diffusion 3 variant of RGB→X. As can be seen

in Table 3 (Part II) the retrained RGB→Xmodels both show improve-

ments compared to its more general pretrained counterpart over

the InteriorVerse test set with the Stable Diffusion 3 variant slightly

outperforming the Stable Diffusion 2.1 variant. However, the per-

formance of the InteriorVerse-specialized Teamwork outperforms

prior methods by a significant margin.

Neural Shading. Inspired by X→RGB [Zeng et al. 2024] we also

create an intrinsic neural shader that generates from a set of intrin-

sic components, a synthetic image under unknown random lighting

that conforms to the provided components. We adapt Stable Diffu-

sion 3 [Esser et al. 2025] for this task, using the same channels as for

the intrinsic image decomposition Teamwork model, except with

different input/output roles, i.e., using shading and render channels

as output (4 teammates) and all other intrinsic channels as input (6

teammates). The neural shading Teamwork model is trained with

64k random exemplars from InteriorVerse, HyperSim, and CGIntrin-

sics. In contrast to X→RGB, we do not overload a black image to

indicate the absence of an input channel, but instead rely on Team-

work’s dynamic (de)activation of teammates. Figure 6 qualitatively

compares Teamwork with X→RGB; a quantitative comparison is

difficult due to the unknown lighting in the synthesized images.

Qualitatively, we see that Teamwork performs similarly to X→RGB.

Intrinsic Image Synthesis. As a final application, we train a novel

generative Teamwork model that directly synthesizes intrinsic com-

ponents from a given prompt. We employ the same teammates as

for intrinsic image decomposition and neural rendering, except that

Teamwork Recompose No-coordination Recompose

✗ ✗ ✗ ✗

✗ ✗ ✗ ✗

✗ ✗ ✗ ✗

Fig. 7. Left: results from a prompt-only conditioned intrinsic image syn-
thesis Teamwork model trained on 128k exemplars from InteriorVerse with
Gemma-3 generated prompts. Right: results from models trained without
coordination (and evaluated with the same seed) lack coherence.

Table 4. Quantitative ablation of Teamwork hyper-parameters on the Stable
Diffusion 3 based environment SVBRDF estimation model trained with 16
accumulations per optimizer step, and using rank=16 and steps=4k if not
otherwise specified.

Parameter Render RMSE

Error Diff. Spec. Rough. Norm.

rank=8 0.286 0.149 0.108 0.175 0.0574

rank=16 0.266 0.143 0.105 0.183 0.0538
rank=64 0.273 0.166 0.101 0.229 0.0612

rank=128 0.279 0.151 0.0991 0.2 0.0557

steps=2k 0.286 0.147 0.107 0.179 0.0566

steps=4k 0.266 0.143 0.105 0.183 0.0538

steps=8k 0.253 0.124 0.108 0.182 0.0525

all 10 are now output-teammates. We train this generative model

on 128k exemplars drawn from InteriorVerse with Gemma-3 [Ka-

math et al. 2025] generated prompts. The intrinsic synthesis results

shown in Figure 7 (first two columns) are qualitatively similar to the

intrinsic components from the intrinsic decomposition in Figure 5.

5 Discussion
Hyper-parameter Ablation. To validate Teamwork’s hyper-para-

meter sensitivity with respect to rank and number of training steps,

we perform two 1D parameter-scans on the Stable Diffusion 3 based

environment SVBRDF estimation model (Table 4). We train each

model with 16× gradient accumulation (in lieu of batching) with 4k

optimization steps (i.e., 16 × 4k = 64k training exemplars) and rank

16 unless specified otherwise. While the optimal parameters are task

specific, we observe that Teamwork is robust across a wide range of

hyper-parameters. In general, a too low rank restricts the adaptation

capabilities whereas a too high rank offers too much freedom, and

thus increases the risk of finding a sub-optimal local minimum.

More training steps/exemplars is generally more beneficial, albeit

with diminishing returns.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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Fig. 8. Comparison of measured computational inference and training
FLOPs (for a single diffusion step) of Teamwork (linear) versus Joint At-
tention (quadratic) for two different base diffusion models with respect to
an increasing number of teammates.

Teamwork vs. Joint Attention. The Joint Attention inpainting (Ta-

ble 1) and SVBRDF estimation (Table 2) variants both underperform

compared to Teamwork. We posit that this is mainly due to two

reasons. First, from Figure 1 we can see that Teamwork contains 4×
as many coordination layers than Joint Attention, and thus Team-

work can more effectively coordinate. Second, Teamwork strongly

prefers pixel-aligned input and output images. In contrast, Joint

Attention has no such built-in prior and thus needs to learn the

positional embeddings and ignore spurious correlations. We expect

Joint Attention to perform better on non-pixel aligned inputs.

An additional key benefit of Teamwork over Joint Attention is

scalability with respect to resolution and number of teammates.

Figure 8 compares inference and training FLOPs (measured using

torch.utils.flop_counter) for Stable Diffusion XL and Stable Dif-

fusion 3 Teamwork and Joint Attention variants for an increasing

number of teammates over a single diffusion step with a 1024 reso-

lution, a rank of 16, and bf16 datatype. The empirically measured

FLOPs confirm the theoretical linear and quadratic complexity of

Teamwork and Joint Attention respectively.

Importance of Coordination. A key component of Teamwork is

the coordination between teammates. To demonstrate the benefit

and necessity of coordination, we train a set of Stable Diffusion 3

based intrinsic image decomposition models using ControlLoRA for

input expansion (trained on the heterogeneous training set) that

each produce one of the intrinsic components without coordination,

and evaluate the models on the InteriorVerse test set (Table 3, Part

III, first row). Compared to the Teamwork model (Table 3, Part I), we

observe a decrease in performance, demonstrating the importance

of coordination. However, a low error does not guarantee that the

errors between the different outputs are coherent. To demonstrate

that Teamwork also helps to improve coherency between output

channels, we measure the joint albedo × shading reconstruction

error with respect to the input image, yielding a 0.1127 LPIPS and

0.1272 RMSE for Teamwork versus 0.2443 and 0.2617 respectively

for the no-coordination model.

As a final experiment to demonstrate both quality and consis-

tency, we train a set of prompt-conditioned intrinsic image synthesis

networks that each produce a single component (without coordi-

nation) and use a common seed (as in RGB→X) when inferencing

Table 5. Quantitative evaluation of the generalization capabilities over Hy-
perSim [Roberts et al. 2021] and Infinigen [Raistrick et al. 2023] of Intrinsic
Image Diffusion [Kocsis et al. 2024], RGB→X [Zeng et al. 2024] and a Team-
work model; the latter two are trained on 256k exemplars from InteriorVerse
to maximize the difference between training and test sets. Only outputs
common between the different models and test sets are included below.

HyperSim Infinigen (Outdoor)

Method Diffuse Normal Diffuse Normal

RMSE LPIPS RMSE RMSE LPIPS RMSE

Kocsis et al. 0.237 0.418 ✗ 0.230 0.615 ✗
RGB→X 0.340 0.484 0.157 0.223 0.596 0.276

Teamwork 0.215 0.356 0.125 0.259 0.549 0.265

each intrinsic component. Figure 7 (last two columns) shows that

while each synthesized output is of high quality, the maps are not

mutually coherent, resulting in severe ghosting artifacts when re-

composing the intrinsic components. In contrast, the Teamwork

generative model (first two columns) produces mutually coherent

intrinsic components.

Dynamic (de)activation. To understand the impact of (de)acti-

vating teammates on the accuracy of the model, we compare the

performance of the intrinsic image decomposition Teamwork model

(trained on the heterogeneous training set) on different subsets of

(activated) teammates. We consider the following subsets: (a) eval-

uating each teammate separately (i.e., one active teammate at the

time – Table 3, Part III, second line), (b) evaluating only teammates

restricted to components present in InteriorVerse (i.e., 7 active out-

put teammates – Table 3, Part III, third line), and (c) evaluating all

9 output teammates jointly (Table 3, Part I, third line). We observe

that evaluating each component in isolation incurs a significant loss

of accuracy as this effectively disables coordination between the

teammates. However, activating only the InteriorVerse components

yields lower error than activating all components. We posit that

Teamwork attempts to balance errors on the subsets seen during

training – InteriorVerse is part of the training set, and thus the

Teamwork model is partially optimized for the subset of Interior-

Verse components. To validate this thesis, we also train a Teamwork

variant with drop-out (i.e., each teammate is deactivated with a 20%

probability), and compare its performance on activating each com-

ponent sequentially versus all components at once (Table 3, Part III,

last two lines). Due to drop-out, the resulting model is forced to rely

less on coordination between the teammates. Consequently the per-

formance gap between sequential and full inference is significantly

reduced. However, the overall performance of the drop-out trained

Teamwork is also reduced and is more similar to the no-coordination

model.

Generalization Capabilities. Teamwork’s ability to leverage pre-

trained diffusion models can aid in generalizing beyond the train-

ing data. To evaluate Teamwork’s generalization capabilities, we

compare in Table 5 the InteriorVerse trained Intrinsic Image Dif-

fusion [Kocsis et al. 2024], RGB→X [Zeng et al. 2024], and the

intrinsic image decomposition Teamwork model on (common in-

trinsic components from) the HyperSim [Roberts et al. 2021] and

Infinigen [Raistrick et al. 2023] test sets. Note that existing real-

world intrinsic datasets [Wu et al. 2023] only assume diffuse albedo

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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Input Intrin. Img. Diff. RGB→X Teamwork

✗ ✗

✗ ✗

✗

✗
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✗

✗
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✗

✗

Fig. 9. Qualitative comparison of intrinsic image decompositions of the
pretrained Intrinsic Image Diffusion [Kocsis et al. 2024], RGB→X [Zeng
et al. 2024], and Teamwork (trained on the heterogeneous data) on real-
world photographs.

and are therefore not suited for validating models with an expanded

set of intrinsic components. While HyperSim also features indoor

scenes, Infinigen contains outdoor scenes, and thus is more dis-

tinct from the InteriorVerse training data. Over both test sets, our

Teamwork variant exhibits better generalization capabilities than

competing diffusion-based intrinsic decomposition methods. Fig-

ure 9 further qualitatively demonstrates Teamwork’s generalization

capabilities on real-world photographs. We observe that Intrinsic

Image Diffusion sometimes fails to extract shadows and reflections,

while RGB→X struggles to produce consistent normals. Refer to

the supplemental material for more real-world side-by-side compar-

isons.

6 Conclusion
In this paper, we presented Teamwork, an efficient and flexible uni-

fied framework for adapting and expanding the number of input

and output channels of a pretrained large image diffusion model.

Teamwork leverages a novel variation of LoRA to coordinate and

adapt between multiple instances of a base diffusion model. We

introduced a novel way to add additional control signals to a model

as well as an easy method of dynamically activating different team-

mates.We demonstrated that Teamwork performs similarly or better

than prior work that relies on bespoke solutions for a variety of

diffusion-derived graphics tasks such as inpainting, SVBRDF estima-

tion, intrinsic decomposition, neural shading, and intrinsic image

synthesis.
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